Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
EBioMedicine ; 102: 105044, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447274

RESUMO

BACKGROUND: Preterm infants are more likely to experience severe respiratory syncytial virus (RSV) disease compared to term infants. The reasons for this are multi-factorial, however their immature immune system is believed to be a major contributing factor. METHODS: We collected cord blood from 25 preterm (gestational age 30.4-34.1 weeks) and 25 term infants (gestation age 37-40 weeks) and compared the response of cord blood mononuclear cells (CBMCs) to RSVA and RSVB stimulation using neutralising assays, high-dimensional flow cytometry, multiplex cytokine assays and RNA-sequencing. FINDINGS: We found that preterm and term infants had similar maternally derived neutralising antibody titres to RSVA and RSVB. Preterm infants had significantly higher myeloid dendritic cells (mDC) RSV infection compared to term infants. Differential gene expression analysis of RSVA stimulated CBMCs revealed enrichment of genes involved in cytokine production and immune regulatory pathways involving IL-10, IL-36γ, CXCL1, CXCL2, SOCS1 and SOCS3 in term infants, while differentially expressed genes (DEGs) in preterm infants were related to cell cycle (CDK1, TTK, ESCO2, KNL1, CDC25A, MAD2L1) without associated expression of immune response genes. Furthermore, enriched genes in term infants were highly correlated suggesting an increased co-ordination of their immune response to RSVA. When comparing DEGs in preterm and term infants following RSVB stimulation, no differences in immune response genes were identified. INTERPRETATION: Overall, our data suggests that preterm infants have a more restricted immunological response to RSVA compared with term infants. While further studies are required, these findings may help to explain why preterm infants are more susceptible to severe RSV disease and identify potential therapeutic targets to protect these vulnerable infants. FUNDING: Murdoch Children's Research Institute Infection and Immunity theme grant.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Criança , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Citocinas/metabolismo , Antivirais , Acetiltransferases , Proteínas Cromossômicas não Histona
2.
Viruses ; 15(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38005952

RESUMO

(1) Background: Palivizumab has been an approved preventative monoclonal antibody for respiratory syncytial virus (RSV) infection for over two decades. However, due to its high cost and requirement for multiple intramuscular injections, its use has been limited mostly to high-income countries. Following our previous study showing the successful lung deposition of aerosolised palivizumab in lambs, this current study evaluated the "proof-of-principle" effect of aerosolised palivizumab delivered as a therapeutic to neonatal lambs following RSV infection. (2) Methods: Neonatal lambs were intranasally inoculated with RSV-A2 on day 0 (day 3 post-birth) and treated with aerosolised palivizumab 3 days later (day 3 post-inoculation). Clinical symptoms, RSV viral load and inflammatory response were measured post-inoculation. (3) Results: Aerosolised therapeutic delivery of palivizumab did not reduce RSV viral loads in the nasopharynx nor the bronchoalveolar lavage fluid, but resulted in a modest reduction in inflammatory response at day 6 post-inoculation compared with untreated lambs. (4) Conclusions: This proof-of-principle study shows some evidence of aerosolised palivizumab reducing RSV inflammation, but further studies using optimized protocols are needed in order to validate these findings.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Animais , Ovinos , Palivizumab , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Antivirais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico
3.
Sci Immunol ; 8(85): eabo4365, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37450574

RESUMO

Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Adulto , Humanos , Timo , Perfilação da Expressão Gênica
4.
Cytometry A ; 103(7): 543-547, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183268

RESUMO

This 27-color panel was developed to simultaneously measure different T-cell populations (CD4, CD8, γδ T-cells, and MAIT cells) and their subsets (Memory, Th1, Th2, Th17, Tfh, and Treg) along with functional markers associated with their activation status, cytokine production and cytotoxicity. This panel will be useful for both in vivo and in vitro studies evaluating T-cells in the context of human health and disease. This panel is valuable in settings where samples are limited as a large amount of data will be generated using small volumes of blood.


Assuntos
Células T Invariantes Associadas à Mucosa , Células Th17 , Humanos , Citometria de Fluxo , Fenótipo , Citocinas , Subpopulações de Linfócitos T
5.
Pathogens ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111482

RESUMO

Preterm infants are more susceptible to severe bacterial and viral infectious diseases than their full-term counterparts. A major contributor to this increased susceptibility may be due to differences in their ability to respond to pathogens. While studies have demonstrated altered bacterial Toll-like receptor (TLR) responses, there is limited data on viral TLR responses in preterm infants. In this study, cord blood mononuclear cells (CBMCs) from 10 moderately preterm (30.4-34.1 wGA), 10 term (37-39.5 wGA) infants, and 5 adults were stimulated with TLR2 (lipoteichoic acid), TLR3 (poly I:C), TLR4 (lipopolysaccharide), TLR7/8 (R848), and TLR9 (CpG-ODN 2216) agonists. Following stimulation, the cellular response was measured by intracellular flow cytometry to detect cell-specific NF-κB (as a marker of the inflammatory response), and multiplex assays were used to measure the cytokine response. This study found that preterm and term infants exhibit very similar baseline TLR expression. In response to both bacterial and viral TLR agonists comparing cell-specific NF-κB activation, preterm infants exhibited increased monocyte activation following LTA stimulation; however, no other differences were observed. Similarly, no difference in cytokine response was observed following stimulation with TLRs. However, a stronger correlation between NF-κB activation and cytokine responses was observed in term infants following poly I:C and R848 stimulation compared to preterm infants. In contrast, despite similar TLR expression, adults produced higher levels of IFN-α following R848 stimulation compared to preterm and term infants. These findings suggest preterm and term infants have a similar capacity to respond to both bacterial and viral TLR agonists. As preterm infants are more likely to develop severe infections, further research is required to determine the immunological factors that may be driving this and develop better interventions for this highly vulnerable group.

6.
Allergy ; 78(4): 928-939, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36719074

RESUMO

Preterm birth is associated with aberrant pulmonary development and increased susceptibility to a range of chronic lung diseases. Even in healthy preterms, the prevalence of physician-diagnosed asthma is far higher than in infants born at term. While physiological, environmental, and genetic factors have been studied extensively, few studies have investigated the immunological factors underpinning this increased susceptibility. Lower rates of atopy and allergic sensitization in preterm compared to term infants suggests non-allergic mechanisms may be driving asthma development in preterms. Preterm infants are more likely to develop severe RSV and HRV disease and have altered microbiomes compared to term infants. Therefore, investigating the differences in immunological interactions (e.g., response to viral infections, microbiome) between children born preterm and term will aid in understanding the immunological basis for their increased susceptibility to asthma development. This is critical to inform the development of interventions to reduce the burden of asthma in this highly vulnerable demographic.


Assuntos
Asma , Hipersensibilidade Imediata , Nascimento Prematuro , Lactente , Criança , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Fatores de Risco , Asma/etiologia , Asma/genética
7.
Nat Commun ; 13(1): 7185, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36434068

RESUMO

There is limited understanding of antibody responses in children across different SARS-CoV-2 variants. As part of an ongoing household cohort study, we assessed the antibody response among unvaccinated children infected with Wuhan, Delta, or Omicron variants, as well as vaccinated children with breakthrough Omicron infection, using a SARS-CoV-2 S1-specific IgG assay and surrogate virus neutralization test (% inhibition). Most children infected with Delta (100%, 35/35) or Omicron (81.3%, 13/16) variants seroconverted by one month following infection. In contrast, 37.5% (21/56) children infected with Wuhan seroconverted, as previously reported. However, Omicron-infected children (geometric mean concentration 46.4 binding antibody units/ml; % inhibition = 16.3%) mounted a significantly lower antibody response than Delta (435.5 binding antibody untis/mL, % inhibition = 76.9%) or Wuhan (359.0 binding antibody units/mL, % inhibition = 74.0%). Vaccinated children with breakthrough Omicron infection mounted the highest antibody response (2856 binding antibody units/mL, % inhibition = 96.5%). Our findings suggest that despite a high seropositivity rate, Omicron infection in children results in lower antibody levels and function compared with Wuhan or Delta infection or with vaccinated children with breakthrough Omicron infection. Our data have important implications for public health measures and vaccination strategies to protect children.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Formação de Anticorpos , Estudos de Coortes , Austrália/epidemiologia , Anticorpos Antivirais , Imunoglobulina G
8.
Immunol Cell Biol ; 100(10): 805-821, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36218032

RESUMO

Age can profoundly affect susceptibility to a broad range of human diseases. Children are more susceptible to some infectious diseases such as diphtheria and pertussis, while in others, such as coronavirus disease 2019 and hepatitis A, they are more protected compared with adults. One explanation is that the composition of the immune system is a major contributing factor to disease susceptibility and severity. While most studies of the human immune system have focused on adults, how the immune system changes after birth remains poorly understood. Here, using high-dimensional spectral flow cytometry and computational methods for data integration, we analyzed more than 50 populations of immune cells in the peripheral blood, generating an immune cell atlas that defines the healthy human immune system from birth up to 75 years of age. We focused our efforts on children under 18 years old, revealing major changes in immune cell populations after birth and in children of schooling age. Specifically, CD4+ T effector memory cells, Vδ2+ gamma delta (γδ)T cells, memory B cells, plasmablasts, CD11c+ B cells and CD16+ CD56bright natural killer (NK) cells peaked in children aged 5-9 years old, whereas frequencies of T helper 1, T helper 17, dendritic cells and CD16+ CD57+ CD56dim NK cells were highest in older children (10-18 years old). The frequency of mucosal-associated invariant T cells was low in the first several years of life and highest in adults between 19 and 30 years old. Late adulthood was associated with fewer mucosal-associated invariant T cells and Vδ2+ γδ T cells but with increased frequencies of memory subsets of B cells, CD4+ and CD8+ T cells and CD57+ NK cells. This human immune cell atlas provides a critical resource to understand changes to the immune system during life and provides a reference for investigating the immune system in the context of human disease. This work may also help guide future therapies that target specific populations of immune cells to protect at-risk populations.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Adulto , Criança , Humanos , Adolescente , Pré-Escolar , Adulto Jovem , Longevidade , Células Matadoras Naturais , Citometria de Fluxo
9.
JAMA Netw Open ; 5(3): e221313, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262717

RESUMO

Importance: The immune response in children with SARS-CoV-2 infection is not well understood. Objective: To compare seroconversion in nonhospitalized children and adults with mild SARS-CoV-2 infection and identify factors that are associated with seroconversion. Design, Setting, and Participants: This household cohort study of SARS-CoV-2 infection collected weekly nasopharyngeal and throat swabs and blood samples during the acute (median, 7 days for children and 12 days for adults [IQR, 4-13] days) and convalescent (median, 41 [IQR, 31-49] days) periods after polymerase chain reaction (PCR) diagnosis for analysis. Participants were recruited at The Royal Children's Hospital, Melbourne, Australia, from May 10 to October 28, 2020. Participants included patients who had a SARS-CoV-2-positive nasopharyngeal or oropharyngeal swab specimen using PCR analysis. Main Outcomes and Measures: SARS-CoV-2 immunoglobulin G (IgG) and cellular (T cell and B cell) responses in children and adults. Seroconversion was defined by seropositivity in all 3 (an in-house enzyme-linked immunosorbent assay [ELISA] and 2 commercial assays: a SARS-CoV-2 S1/S2 IgG assay and a SARS-CoV-2 antibody ELISA) serological assays. Results: Among 108 participants with SARS-CoV-2-positive PCR findings, 57 were children (35 boys [61.4%]; median age, 4 [IQR, 2-10] years) and 51 were adults (28 women [54.9%]; median age, 37 [IQR, 34-45] years). Using the 3 established serological assays, a lower proportion of children had seroconversion to IgG compared with adults (20 of 54 [37.0%] vs 32 of 42 [76.2%]; P < .001). This result was not associated with viral load, which was similar in children and adults (mean [SD] cycle threshold [Ct] value, 28.58 [6.83] vs 24.14 [8.47]; P = .09). In addition, age and sex were not associated with seroconversion within children (median age, 4 [IQR, 2-14] years for both seropositive and seronegative groups; seroconversion by sex, 10 of 21 girls [47.6%] vs 10 of 33 boys [30.3%]) or adults (median ages, 37 years for seropositive and 40 years for seronegative adults [IQR, 34-39 years]; seroconversion by sex, 18 of 24 women [75.0%] vs 14 of 18 men [77.8%]) (P > .05 for all comparisons between seronegative and seropositive groups). Symptomatic adults had 3-fold higher SARS-CoV-2 IgG levels than asymptomatic adults (median, 227.5 [IQR, 133.7-521.6] vs 75.3 [IQR, 36.9-113.6] IU/mL), whereas no differences were observed in children regardless of symptoms. Moreover, differences in cellular immune responses were observed in adults compared with children with seroconversion. Conclusions and Relevance: The findings of this cohort study suggest that among patients with mild COVID-19, children may be less likely to have seroconversion than adults despite similar viral loads. This finding has implications for future protection after SARS-CoV-2 infection in children and for interpretation of serosurveys that involve children. Further research to understand why seroconversion and development of symptoms are potentially less likely in children after SARS-CoV-2 infection and to compare vaccine responses may be of clinical and scientific importance.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina G/sangue , SARS-CoV-2/imunologia , Adulto , Fatores Etários , COVID-19/epidemiologia , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Soroconversão , Vitória/epidemiologia , Carga Viral
10.
Nat Commun ; 13(1): 769, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140232

RESUMO

Streptococcus pyogenes causes at least 750 million infections and more than 500,000 deaths each year. No vaccine is currently available for S. pyogenes and the use of human challenge models offer unique and exciting opportunities to interrogate the immune response to infectious diseases. Here, we use high-dimensional flow cytometric analysis and multiplex cytokine and chemokine assays to study serial blood and saliva samples collected during the early immune response in human participants following challenge with S. pyogenes. We find an immune signature of experimental human pharyngitis characterised by: 1) elevation of serum IL-1Ra, IL-6, IFN-γ, IP-10 and IL-18; 2) increases in peripheral blood innate dendritic cell and monocyte populations; 3) reduced circulation of B cells and CD4+ T cell subsets (Th1, Th17, Treg, TFH) during the acute phase; and 4) activation of unconventional T cell subsets, γδTCR + Vδ2+ T cells and MAIT cells. These findings demonstrate that S. pyogenes infection generates a robust early immune response, which may be important for host protection. Together, these data will help advance research to establish correlates of immune protection and focus the evaluation of vaccines.


Assuntos
Faringite/imunologia , Streptococcus pyogenes/imunologia , Adulto , Antígenos de Bactérias/imunologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Masculino , Células T Invariantes Associadas à Mucosa , Faringite/microbiologia , Infecções Estreptocócicas , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores , Células Th17/imunologia
11.
J Public Health (Oxf) ; 44(2): e260-e263, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-33611565

RESUMO

BACKGROUND: To determine if dried blood spot specimens (DBS) can reliably detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies, we compared the SARS-CoV-2 IgG antibody response in paired serum and eluates from DBS specimens. METHODS: A total of 95 paired DBS and serum samples were collected from 74 participants (aged 1-63 years) as part of a household cohort study in Melbourne, Australia. SARS-CoV-2 IgG antibodies specific for the receptor-binding domain (RBD) and S1 proteins between serum and eluates from DBS specimens were compared using an FDA-approved ELISA method. RESULTS: Among the 74 participants, 42% (31/74) were children and the rest were adults. A total of 16 children and 13 adults were SARS-CoV-2 positive by polymerase chain reaction. The IgG seropositivity rate was similar between serum and DBS specimens (18.9% (18/95) versus 16.8% (16/95)), respectively. Similar RBD and S1-specific IgG levels were detected between serum and DBS specimens. Serum IgG levels strongly correlated with DBS IgG levels (r = 0.99, P < 0.0001) for both SARS-CoV-2 proteins. Furthermore, antibodies remained stable in DBS specimens for >3 months. CONCLUSIONS: DBS specimens can be reliably used as an alternative to serum samples for SARS-CoV-2 antibody measurement. The use of DBS specimens would facilitate serosurveillance efforts particularly in hard-to-reach populations and inform public health responses including COVID-19 vaccination strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Anticorpos Antivirais , COVID-19/diagnóstico , Vacinas contra COVID-19 , Criança , Estudos de Coortes , Humanos , Imunoglobulina G
12.
Arch Dis Child ; 107(4): 359-364, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34526293

RESUMO

BACKGROUND: Early recognition of children at risk of severe respiratory syncytial virus (RSV) lower respiratory tract infection is important as it informs management decisions. We aimed to evaluate factors associated with severe disease among young children hospitalised with RSV infection. METHODS: We conducted a retrospective cohort study of all children <2 years of age hospitalised for RSV lower respiratory tract infection at a single tertiary paediatric hospital over three RSV seasons (January 2017-December 2019). We classified children as having 'moderate' or 'severe' disease based on the level of respiratory intervention and used univariable and multivariable regression models to determine factors associated with severe disease. RESULTS: Of 970 hospitalised children, 386 (40%) were classified as having 'severe' and 584 (60%) as having 'moderate' RSV disease. On multivariable analyses, age <2 months (OR: 2.3, 95% CI 1.6 to 3.3, p<0.0001), prematurity (OR: 1.6, 95% CI 1.1 to 2.4, p=0.02) and RSV-parainfluenza virus type 3 (PIV3) codetection (OR: 2.6, 95% CI 1.05 to 6.5, p=0.04) were independently associated with severe disease. CONCLUSION: Younger age, prematurity and PIV3 codetection were associated with severe RSV disease in children <2 years of age hospitalised with RSV infection. The association between PIV3 and severe RSV disease is a novel finding and warrants further investigation.


Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Criança , Criança Hospitalizada , Pré-Escolar , Hospitalização , Humanos , Lactente , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Estudos Retrospectivos , Fatores de Risco
13.
Front Immunol ; 12: 777927, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790206

RESUMO

Background: Preterm infants are highly vulnerable to infectious disease. While many factors are likely to contribute to this enhanced susceptibility, the immature nature of the preterm immune system is postulated as one key factor. Methods: In our study, we used high-dimensional flow cytometry and cytokine assays to characterise the immune profiles in 25 preterm (range: 30.4-34.1 weeks gestational age) and 25 term infant (range: 37-40 weeks gestational age) cord blood samples. Results: We found that preterm infants exhibit reduced frequencies of monocytes, CD56bright NK cells, CD8+ T-cells, γδ T-cells and an increased frequency of intermediate monocytes, CD4+ T-cells, central memory CD4+ and CD8+ T-cells, Tregs and transitional B-cells compared to term infants. Pro-inflammatory cytokines IL-1ß, IL-6 and IL-17A were lower in preterm infants in addition to chemokines IL-8, eotaxin, MIP-1α and MIP-1ß. However, IL-15 and MCP-1 were higher in preterm infants. Conclusion: Overall, we identify key differences in pro-inflammatory immune profiles between preterm and term infants. These findings may help to explain why preterm infants are more susceptible to infectious disease during early life and facilitate the development of targeted interventions to protect this highly vulnerable group.


Assuntos
Citocinas/sangue , Sangue Fetal/imunologia , Recém-Nascido Prematuro/imunologia , Mediadores da Inflamação/sangue , Inflamação/imunologia , Linfócitos/imunologia , Monócitos/imunologia , Nascimento a Termo/imunologia , Imunidade Adaptativa , Biomarcadores/sangue , Cordocentese , Feminino , Sangue Fetal/citologia , Idade Gestacional , Humanos , Imunidade Inata , Recém-Nascido , Recém-Nascido Prematuro/sangue , Inflamação/sangue , Inflamação/diagnóstico , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Masculino , Nascimento a Termo/sangue
14.
Front Immunol ; 12: 741639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721408

RESUMO

Children have reduced severity of COVID-19 compared to adults and typically have mild or asymptomatic disease. The immunological mechanisms underlying these age-related differences in clinical outcomes remain unexplained. Here, we quantify 23 immune cell populations in 141 samples from children and adults with mild COVID-19 and their PCR-negative close household contacts at acute and convalescent time points. Children with COVID-19 displayed marked reductions in myeloid cells during infection, most prominent in children under the age of five. Recovery from infection in both children and adults was characterised by the generation of CD8 TCM and CD4 TCM up to 9 weeks post infection. SARS-CoV-2-exposed close contacts also had immunological changes over time despite no evidence of confirmed SARS-CoV-2 infection on PCR testing. This included an increase in low-density neutrophils during convalescence in both exposed children and adults, as well as increases in CD8 TCM and CD4 TCM in exposed adults. In comparison to children with other common respiratory viral infections, those with COVID-19 had a greater change in innate and T cell-mediated immune responses over time. These findings provide new mechanistic insights into the immune response during and after recovery from COVID-19 in both children and adults.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Convalescença , Exposição Ambiental , Características da Família , Feminino , Humanos , Imunidade Celular , Memória Imunológica , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695564

RESUMO

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Isotiocianatos/farmacologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Sulfóxidos/farmacologia , Linhagem Celular , Ciclina D1/metabolismo , Células HL-60 , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Heme Oxigenase-1/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Fator 2 Relacionado a NF-E2/metabolismo , Opsonização/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Células THP-1 , Verduras/química
16.
Exp Neurol ; 345: 113826, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343529

RESUMO

Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.


Assuntos
Gliose/metabolismo , Proteínas de Homeodomínio/biossíntese , Células-Tronco Neurais/metabolismo , Doenças Neuroinflamatórias/metabolismo , Traumatismos da Medula Espinal/metabolismo , Fatores Etários , Animais , Feminino , Gliose/patologia , Gliose/prevenção & controle , Células HEK293 , Humanos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/prevenção & controle , Traumatismos da Medula Espinal/patologia
17.
Mol Ther ; 29(8): 2469-2482, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33895323

RESUMO

Promoting residential cells, particularly endogenous neural stem and progenitor cells (NSPCs), for tissue regeneration represents a potential strategy for the treatment of spinal cord injury (SCI). However, adult NSPCs differentiate mainly into glial cells and contribute to glial scar formation at the site of injury. Gsx1 is known to regulate the generation of excitatory and inhibitory interneurons during embryonic development of the spinal cord. In this study, we show that lentivirus-mediated expression of Gsx1 increases the number of NSPCs in a mouse model of lateral hemisection SCI during the acute stage. Subsequently, Gsx1 expression increases the generation of glutamatergic and cholinergic interneurons and decreases the generation of GABAergic interneurons in the chronic stage of SCI. Importantly, Gsx1 reduces reactive astrogliosis and glial scar formation, promotes serotonin (5-HT) neuronal activity, and improves the locomotor function of the injured mice. Moreover, RNA sequencing (RNA-seq) analysis reveals that Gsx1-induced transcriptome regulation correlates with NSPC signaling, NSPC activation, neuronal differentiation, and inhibition of astrogliosis and scar formation. Collectively, our study provides molecular insights for Gsx1-mediated functional recovery and identifies the potential of Gsx1 gene therapy for injuries in the spinal cord and possibly other parts of the central nervous system.


Assuntos
Perfilação da Expressão Gênica/métodos , Vetores Genéticos/administração & dosagem , Proteínas de Homeodomínio/genética , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Redes Reguladoras de Genes , Terapia Genética , Lentivirus/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais , Recuperação de Função Fisiológica , Análise de Sequência de RNA , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/fisiopatologia
18.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875592

RESUMO

The amino acid sequences of proteins have evolved over billions of years, preserving their structures and functions while responding to evolutionary forces. Are there conserved sequence and structural elements that preserve the protein folding mechanisms? The functionally diverse and ancient (ßα)1-8 TIM barrel motif may answer this question. We mapped the complex six-state folding free energy surface of a ∼3.6 billion y old, bacterial indole-3-glycerol phosphate synthase (IGPS) TIM barrel enzyme by equilibrium and kinetic hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS on the intact protein reported exchange in the native basin and the presence of two thermodynamically distinct on- and off-pathway intermediates in slow but dynamic equilibrium with each other. Proteolysis revealed protection in a small (α1ß2) and a large cluster (ß5α5ß6α6ß7) and that these clusters form cores of stability in Ia and Ibp The strongest protection in both states resides in ß4α4 with the highest density of branched aliphatic side chain contacts in the folded structure. Similar correlations were observed previously for an evolutionarily distinct archaeal IGPS, emphasizing a key role for hydrophobicity in stabilizing common high-energy folding intermediates. A bioinformatics analysis of IGPS sequences from the three superkingdoms revealed an exceedingly high hydrophobicity and surprising α-helix propensity for ß4, preceded by a highly conserved ßα-hairpin clamp that links ß3 and ß4. The conservation of the folding mechanisms for archaeal and bacterial IGPS proteins reflects the conservation of key elements of sequence and structure that first appeared in the last universal common ancestor of these ancient proteins.


Assuntos
Indol-3-Glicerolfosfato Sintase/metabolismo , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína/genética , Sequência de Aminoácidos/genética , Aminoácidos/genética , Proteínas de Bactérias/química , Ligação de Hidrogênio , Indol-3-Glicerolfosfato Sintase/fisiologia , Cinética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos/genética , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Termodinâmica
19.
Nutrients ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673203

RESUMO

The dietary isothiocyanate L-sulforaphane (LSF), derived from cruciferous vegetables, is reported to have several beneficial biological properties, including anti-inflammatory and immunomodulatory effects. However, there is limited data on how LSF modulates these effects in human immune cells. The present study was designed to investigate the immunomodulatory effects of LSF (10 µM and 50 µM) on peripheral blood mononuclear cell (PBMC) populations and cytokine secretion in healthy adult volunteers (n = 14), in the presence or absence of bacterial (lipopolysaccharide) and viral (imiquimod) toll-like receptor (TLRs) stimulations. Here, we found that LSF reduced pro-inflammatory cytokines interleukin (IL)-6, IL-1ß, and chemokines monocyte chemoattractant protein (MCP)-1 irrespective of TLR stimulations. This result was associated with LSF significantly reducing the proportion of natural killer (NK) cells and monocytes while increasing the proportions of dendritic cells (DCs), T cells and B cells. We found a novel effect of LSF in relation to reducing cluster of differentiation (CD) 14+ monocytes while simultaneously increasing monocyte-derived DCs (moDCs: lineage-Human Leukocyte Antigen-DR isotype (HLA-DR)+CD11blow-high CD11chigh). LSF was also shown to induce a 3.9-fold increase in the antioxidant response element (ARE) activity in a human monocyte cell line (THP-1). Our results provide important insights into the immunomodulatory effects of LSF, showing in human PBMCs an ability to drive differentiation of monocytes towards an immature monocyte-derived dendritic cell phenotype with potentially important biological functions. These findings provide insights into the potential role of LSF as a novel immunomodulatory drug candidate and supports the need for further preclinical and phase I clinical studies.


Assuntos
Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Isotiocianatos/farmacologia , Leucócitos Mononucleares/imunologia , Sulfóxidos/farmacologia , Adulto , Secreções Corporais , Diferenciação Celular , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Feminino , Voluntários Saudáveis , Humanos , Células Matadoras Naturais/imunologia , Masculino
20.
Thorax ; 76(9): 942-950, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33574121

RESUMO

Respiratory syncytial virus (RSV) is the most common viral pathogen associated with acute lower respiratory tract infection (LRTI) in children under 5 years of age. Severe RSV disease is associated with the development of chronic respiratory complications such as recurrent wheezing and asthma. A common risk factor for developing severe RSV disease is premature gestation and this is largely due to an immature innate immune system. This increases susceptibility to RSV since the innate immune system is less able to protect against pathogens at a time when adaptive immunity has not fully developed. This review focuses on comparing different aspects of innate immunity between preterm and term infants to better understand why preterm infants are more susceptible to severe RSV disease. Identifying early life innate immune biomarkers associated with the development of severe RSV disease, and understanding how these compare between preterm and term infants, remains a critically important question that would aid the development of interventions to reduce the burden of disease in this vulnerable population.


Assuntos
Recém-Nascido Prematuro , Infecções por Vírus Respiratório Sincicial/imunologia , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Lactente , Recém-Nascido , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA